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How good is the 16% error? The most naïve prediction would be to simply predict the mean perimeter of the 
training data for all of the test set, which has a percentage error of just 93%! So we have certainly beaten this 
baseline. In practice though, this naïve model would never be used. In 2012, Cyril Morcrette presented a 
relationship between cloud fraction and cloud perimeter, 𝑃 = 𝛼𝐹(1 − 𝐹), where 𝑃 and 𝐹 are the perimeter 
and fraction respectively [1]. 𝛼 is a parameter which can be adjusted to fit closely to the training data – the 
optimal alpha was found to be 0.64. The result of our work presented an opportunity to corroborate this 
hypothesis on 3D data for the first time and improve upon the prediction. The results were that the model 
could achieve a percentage error of 23.8%! So, it is clear that the relationship generalises and offers an 
accurate prediction of the cloud perimeter on 3D data. Not only has the model been corroborated, but our new 
machine learning model has further reduced this error by around a third!

The first model devised was a simple neural network. It took a single vector as the input. In order to get a 
vector as the input, the vertical profiles of atmospheric conditions had to be stacked one on top of the other 
and then the cloud fraction and height appended onto the end. 
It would be good if the network took the atmospheric profiles as an array so that it could see the vertical 
structure of the atmosphere without it being flattened into a vector like it was in the previous network. The 
problem is that we now have two floating scalars which cannot be inputted into a neural network with an array 
of data. To solve this, a multi-input neural network or MNN was used. This has two separate network inputs 
which are entirely independent. Both data types can be inputted simultaneously. It also means convolutional 
layers could be applied to the atmospheric data, to leverage the spatial aspect of the data. Therefore, two 
models were trained – a simple neural network and the convolutional MNN.

After fitting a neural network, the decision was made to pre-process the data prior to inputting into the model. 
A large portion of the data points, around 90%, had a cloud perimeter of 0. As a result, every model learnt to 
predict 0 perimeter for all data points. Since cloud fraction is provided as an explanatory variable, if a data point 
has 0 cloud fraction, then we want our model to predict 0 cloud perimeter. Almost like "bypass" layer built on 
top of the network, any incoming data gets checked to see whether its cloud fraction is 0. If so, a cloud 
perimeter of 0 is predicted and if not, it is inputted into the neural network. 
This was also found to partly solve some RAM issues, since reducing the size of the training set in this way 
allowed the neural network to be trained on the entire training set simultaneously, as it was now under 24GB.

Overall, we have cleaned the COGS data, in order to compute 
the cloud perimeters and cloud fractions. These have been 
used to train a machine learning model to parameterize the 
cloud perimeter. Two models were produced, with the more 
complicated MNN performing best. The cleaned data has been 
used to corroborate the results of the 𝑷 = 𝜶𝑭 𝟏 − 𝑭 model 
which was originally proposed for 2D data [1]. Not only has the 
strong performance of this pre-existing model been proved on 
our 3D data, but our new model has now been able to further 
reduce the error of the state-of-the-art prediction by a third.

The cloud reconstructions required the triangulation of 6 cameras, 
thus the region of overlap was more like a pyramid rather than a 
perfect 6km cube. Thus, many of the 320 cells contained missing 
values that could not be reconstructed. We ignored any of the 320 
cells which contain a missing value, since this still left 98 cells per time 
step (left). For every COGS time step, the cell height, cloud fraction 
and cloud perimeter were computed for all 98 cells. Each cell 
represented one training point, with two scalar – cloud fraction and 
height – and one array of atmospheric conditions (the same used by 
all cells at a given time step) as explanatory variables. These were 
used to predict the response variable – the cloud perimeter.

Our decision to use machine learning was mainly due to the recent availability of a dataset by the US 
Department of Energy. Using cameras and stereophotogrammetry, the locations of clouds over time down to 
50m accuracy on a 6km3 site in Oklahoma have been collected. This is the Clouds Optically Gridded by Stereo 
(or COGS) data set. Records of clouds were taken every 20 seconds for nearly 3 years, in a vast matrix 
containing 1s and 0s for “cloud” and “no cloud”. This is an entirely unique insight into the lifecycle of clouds. 

The aim of the project was to use machine learning to gain more insight into the organisation of clouds. 
Current weather forecast models divide the Earth into grid squares and predict weather for each entire square. 
However, they have a blind spot when it comes to clouds, because almost all cloud organisation occurs at a 
subgrid level. The entire grid square will just be labelled 100% cloud or no cloud. Small shallow, cumulus clouds 
over warm, dry land are particularly troublesome because of their tiny size but they also frustratingly have a 
large impact on climate. The current way to overcome this is to use a cloud fraction parameterization to specify 
what proportion of the grid box is cloudy. 
While it would have been far beyond the scope of the project to predict the entire distribution of cloud, we 
used machine learning predict the surface area, also known as “cloud perimeter”.  This value is insightful in 
both cloud and radiation schemes. Using the cloud fraction (which we already model) combined with perimeter
offers a good insight into organisation; a fraction of cloud close to 0.5 and a very large surface area might 
suggest shallow cumulus clouds, which have an almost checkerboard-like pattern. 
It is also a useful parameter to improve other parameterizations, such as the cloud-erosion parameterization, 
improvements in which in turn have been found to improve the overall cloud scheme. In addition to this, the 
SPeedy Algorithm for Radiative Transfer through Cloud Sides (or SPARTACUS) which can approximate 3D 
radiative transfer in climate models, requires an estimate of the cloud perimeter. Hence our work could 
improve its performance and even improve the modelling of clouds’ radiative effects.

INTRODUCTION PRE-PROCESSING

RESULTS
The accuracy on the test set was assessed via the mean absolute error - the average absolute difference 
between the true perimeter and the predicted perimeter over the entire test set. This was divided by the mean 
value of the perimeter on the test set to give a relative average percentage error in the prediction which was 
slightly more interpretable. The simpler model managed to achieve a percentage error of 18.3%. The more 
complicated convolutional MNN managed to improve this accuracy to 16.1%. The errors achieved by the two 
models, along with two plots containing the validation and training error of the model against the epoch 
number, are given below.

Overall, a successful project would therefore be one that ultimately built a reliable machine learning model 
which could predict the cloud perimeter within a grid square, using information such as cloud fraction and 
various other atmospheric properties such as temperature and pressure. 
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We also had data available on 
atmospheric conditions such as 
temperature and humidity. This data 
unfortunately only existed in a single 
vertical profile, located at the centre 
of the 6km-cubed domain. The data 
derived from a balloon sounding.

Image displaying the COGS domain (left) with 
atmospheric profile (right)

The first approach might be to compute the cloud fraction and 
perimeter on the entire 6km3 region at each time step and use these 
values as the data with which to train the model.
However, it was decided that generating a single value for perimeter 
and fraction for the entire 6km-cubed region was not entirely sensible. 
Ideally, we wanted to implement this model within the Met Office’s 
existing climate models, and the Met Office grid squares are 
considerably smaller than 6km3 - 300m high by 1500m by 1500m 
horizontally. Therefore, a single Met Office grid square located above 
the surface at the boundary layer height will likely have a much higher 
proportion of cloud than a 6km3 region which is may be mostly empty 
space. A model trained only seeing a 6km3 region with barely any cloud 
will not perform well when asked to predict the cloud perimeter in a 
much smaller grid square, located precisely in an area filled with cloud. 
As a result, we decided to divide the 6km3 region into smaller cells 
with the same dimensions as the Met Office grid squares. For each 
time step, our 6km3 region contains 320 of these cells. 

On each cell, the cloud fraction and cloud perimeter needed to be 
computed. The cloud fraction was straightforward – this is the number 
of 1s in the cell divided by the size of the cell. The cloud perimeter had 
to be computed by running a convolutional kernel (left) over the 
domain. For each cloudy pixel, the kernel computed the number of 
neighbouring 0s storing these values in a new matrix. This matrix was 
then summed and we get the cloud perimeter over the entire cell. 

A key modelling decision was how to ‘pad’ the domain, in order to 
apply the kernel to the outside of the domain to compute the 
perimeter. We don’t know whether a 1 on the outside lies next to a 0 or 
a 1. We decided to only run the kernel up to the penultimate slices of 
the 6km3 domain so as not to add any artefacts to the data.

It was thought likely that the height of the cell within the domain would be useful for the perimeter prediction. 
Hence, this was also used as an explanatory variable, encoded as an integer from 1 to 20 for where it occurs in 
the vertical stack of cells in the 6km3 domain. The full atmospheric profile was used as a predictive variable for 
all cells because, for example, pressure lower down near the surface affects what clouds look like higher up. The 
single available atmospheric profile had to be collocated in time with the COGS time steps.

A visualisation of the division of the domain 
into cells on which the cloud perimeter, 
cloud fraction and height were computed, 
along with a single vertical profile for each 
atmospheric condition, used as an 
explanatory variable for all cells
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A key plot for validating the results was the true perimeters against the 
predicted perimeters (right). A perfect predictor would have all points 
along the red 𝑦 = 𝑥 line. Of course, this isn’t the case, but there is a very 
strong correlation, and there doesn’t appear to be any systematic bias.
Some of the largest true perimeters are under predicted by the model. 
However, it isn’t surprising that the more extreme (and likely unusual) 
values are those that the model cannot accurately predict. 

CONCLUSIONS
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An image displaying problematic cells lying on the 
edge of the domain. The values in purple would 
need to be known in order to apply the kernel to 
elements on the outside of the domain.


